top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE) / / Hossam A. Gabbar
2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE) / / Hossam A. Gabbar
Autore Gabbar Hossam A.
Pubbl/distr/stampa Piscataway, NJ : , : VDE, , 2022
Descrizione fisica 1 online resource (vii, 130 pages) : illustrations (some color)
Disciplina 621.3
Soggetto topico Electrical engineering
ISBN 1-66549-930-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2022 IEEE 10th International Conference on Smart Energy Grid Engineering
Record Nr. UNISA-996574974903316
Gabbar Hossam A.  
Piscataway, NJ : , : VDE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Autore Gabbar Hossam A.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (295 pages)
Disciplina 629.286
Soggetto topico Transportation - Planning
Battery charging stations (Electric vehicles)
ISBN 9783031095009
9783031094996
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Chapter 1: Introduction -- 1.1 Mobility -- 1.2 Transitioning of Transportation Technologies -- 1.3 Transportation Electrification and Charging Technologies -- 1.4 Challenges of Fast-Charging Station Development -- 1.5 Summary -- References -- Chapter 2: Requirement Analysis of Fast-Charging Stations -- 2.1 Introduction -- 2.2 Requirement Analysis of Fast-Charging Station -- 2.3 FCS Design Requirements -- 2.3.1 [A1] Energy Management System Design -- 2.3.2 [A2] Protection System Design -- 2.3.3 [A3] Design FCS Simulation Models -- 2.3.4 [A4] Charging Unit Design -- 2.3.5 [A5] FCS Layout Design -- 2.3.6 [A6] Design Optimization -- 2.3.7 [A7] Design Grid Interface -- 2.3.8 [A8] Filter Design -- 2.3.9 [A9] AC-DC Converter Design -- 2.3.10 [A10] Transformer Design -- 2.3.11 [A11] DC-DC Converter Design -- 2.3.12 [A12] Control System Design -- 2.4 FCS Facility -- 2.4.1 [B1] Manage Incoming Vehicles -- 2.4.2 [B2] Manage Financial Model -- 2.4.3 [B3] Manage Standards -- 2.4.4 [B4] Manage FCS Risks -- 2.4.5 [B5] Manage FCS Facility Operation -- 2.4.6 [B6] Manage Charging Requests -- 2.5 Manage Energy System in FCS -- 2.5.1 [C1] Manage Power from Grid -- 2.5.2 [C2] Manage Energy Storage -- 2.5.3 [C3] Manage Energy Sources -- 2.5.4 [C4] Manage Energy to Grid -- 2.5.5 [C5] Manage Energy to Units -- 2.5.6 [C6] Manage MEG -- 2.6 Manage Charging in FCS -- 2.6.1 [D1] Manage Fast Charging -- 2.6.2 [D2] Manage Ultrafast Charging -- 2.6.3 [D3] Manage Wireless Charging -- 2.6.4 [D4] Manage Regular Charging -- 2.6.5 [D5] Manage Charge Batteries -- 2.6.6 [D6] Manage V2G -- 2.7 Analysis of Best Practice Charging Stations -- 2.7.1 European Distribution System Operators (DSO) -- 2.7.2 Next-Generation Vehicle Promotion Center: Japan -- 2.7.3 US Transport Electrification -- 2.7.4 Smart City Sweden -- 2.7.5 Electrification of Public Bus in Singapore.
2.8 Charging Technology Specifications -- 2.9 Analysis of Mobility Requirements -- 2.10 Automotive Cybersecurity -- 2.11 Summary -- References -- Chapter 3: Fast-Charging Station Design -- 3.1 Introduction -- 3.2 Conceptual Design of Fast-Charging Models -- 3.2.1 Functional Modeling of Fast-Charging Station -- 3.2.2 Fast Charging from the Grid -- 3.2.3 Fast Charging from Grid with Flywheel and Battery -- 3.2.4 Fast Charging with Micro Energy Grid -- 3.2.5 Fast Charging from Grid with Supercapacitor and Battery -- 3.2.6 Powering Charging Station -- 3.2.7 FCS Cyber Physical System Modeling -- 3.2.8 Physical System Modeling for Maritime and Charging Station -- 3.3 Detailed Design of Fast-Charging Station -- 3.3.1 Fast-Charging Station Design -- 3.3.2 Fast-Charging Station Detailed Design -- 3.3.3 Detailed Design of Multi-Input Converter for Fast-Charging Station -- 3.3.4 The Operation Modes of the Converter -- 3.3.4.1 Mode 1: Battery to DC Link -- 3.3.4.2 Mode 2: Supercapacitor to DC Link -- 3.3.4.3 Mode 3: Battery and Supercapacitor -- 3.3.4.4 Mode 4: Battery and Supercapacitor to DC Link -- 3.3.4.5 Mode 5: DC Link to Battery and Supercapacitor -- 3.4 Control System Design -- 3.4.1 Control Design for Charging Unit -- 3.4.1.1 Model Reference Adaptive Control -- 3.4.1.2 Maximum Power Point Tracking (MPPT) -- 3.4.2 Integrated Control Design for the Charging Station -- 3.4.3 Energy Management System (EMS) -- 3.5 Summary -- References -- Chapter 4: Analysis of Transportation Electrification and Fast Charging -- 4.1 Introduction -- 4.2 Analysis of Electric Buses -- 4.2.1 e-Bus Opportunities -- 4.2.2 e-Bus Challenges -- 4.2.3 Battery Technologies -- 4.2.3.1 Battery Size and Range -- 4.2.3.2 Battery Aging -- 4.2.4 Depot for Bus Charging -- 4.2.5 On-Route Charging -- 4.2.6 Conductive On-Route Charging -- 4.2.7 Inductive On-Route Charging.
4.2.8 Battery Swapping On-Route Charging -- 4.3 Analysis of Electric Trucks -- 4.3.1 Fast-Charging System of HDT -- 4.3.2 Depot Charging Electrical Distribution System -- 4.3.3 Charging Scheduling Algorithm -- 4.3.4 Electric Truck Opportunities and Challenges -- 4.3.5 HDT Fast Charging in the Market -- 4.4 EV Charging Technologies -- 4.4.1 AC Charging Station -- 4.4.1.1 Level 1 Charging -- 4.4.1.2 Level 2 Charging -- 4.4.2 DC Charging Station -- 4.4.3 EV Charging Standards -- 4.4.4 EV Fast-Charging Applications and Their Challenges -- 4.5 Summary -- References -- Chapter 5: Fast-Charging Infrastructure for Transit Buses -- 5.1 Introduction -- 5.2 Electric Bus Charging Models -- 5.3 Performance Measures -- 5.4 Case Study -- 5.5 Summary -- References -- Chapter 6: A Robust Decoupled Microgrid Charging Scheme Using a DC Green Plug-Switched Filter Compensator -- 6.1 Introduction -- 6.2 The Proposed Efficient PV-Powered Schemes -- 6.3 The Controller Design Steps and Structure -- 6.4 Digital Simulation Results -- 6.5 Conclusions -- Appendices -- Appendix A: Designed GPFC System Parameters -- Appendix B: Controller Gain Parameters -- References -- Chapter 7: Fast Charging for Railways -- 7.1 Introduction -- 7.1.1 Chapter Outlines -- 7.2 Railway Electrification Infrastructure -- 7.3 Voltage Standardization for Railway Electrification -- 7.4 Resilient Interconnected Microgrid (RIMG) -- 7.5 Requirements of the Utility -- 7.6 The Criteria of the Control System -- 7.7 Design Concepts of Multiple Interconnected Resilient Microgrids -- 7.8 Design of IMGs -- 7.9 Detailed Design of IMGs -- 7.10 Energy Storage Technologies for the Railway -- 7.10.1 Flywheel -- 7.10.2 ESS in Railway Systems -- References -- Chapter 8: Hybrid Charging Stations -- 8.1 Introduction -- 8.2 Hybrid Charging Station -- 8.3 Operation of Hybrid Charging Station.
8.4 Data Analysis of Hybrid Charging Station -- 8.4.1 EV Charging Station Data -- 8.4.2 Gas Refueling Station Data -- 8.4.3 FCV Refueling Station Data -- 8.5 Optimization of Hybrid Station Operation -- 8.5.1 Objective Functions -- 8.5.2 Constraints -- 8.5.3 Assumptions -- 8.6 Optimization Algorithm -- 8.7 Summary -- References -- Chapter 9: Fast Charging for Marine Transportation -- 9.1 Introduction -- 9.2 Functional Modeling of Hybrid Energy System for Maritime and Waterfront Applications -- 9.3 Energy System Design for Maritime and Waterfront -- 9.3.1 Energy System Design Scenarios -- 9.3.2 Performance Measures -- 9.3.3 Ship Route -- 9.3.4 System Design -- 9.3.5 Optimization -- 9.3.6 Cargo and Propulsion Modules for Nuclear-Powered Ships -- 9.4 Advances in Research and Innovation -- 9.4.1 Research on Energy Systems for Marine Transportation and Waterfront Infrastructures -- 9.4.2 Research Areas -- 9.4.3 Research and Test Facility -- 9.4.4 Research Impacts -- 9.4.5 Target Industries -- 9.5 Summary -- References -- Chapter 10: Resilient Charging Stations for Harsh Environment and Emergencies -- 10.1 Introduction -- 10.2 Charging Infrastructures -- 10.3 Charging in Harsh Environment -- 10.4 Resiliency Analysis of Charging Infrastructures -- 10.5 Emergency Analysis of Charging Stations -- 10.6 Priority Analysis of Charging Stations -- 10.7 Vehicle Energy Management in Emergencies -- 10.8 Summary -- References -- Chapter 11: Autonomous Transportation -- 11.1 Autonomous Transportation -- 11.2 Charging Requirements for Autonomous Transportation -- 11.3 Case Study -- 11.4 Base Scenario -- 11.5 The Scenario of Fixed Pick-Up and Drop-Off Points -- 11.6 Mapping CAV Routes to Charging Infrastructure -- 11.7 Summary -- References -- Chapter 12: Transportation with Electric Wheel -- 12.1 Introduction -- 12.2 Regenerative Braking System -- 12.3 Electric Wheel.
12.4 EV with Electric Wheel -- 12.5 Summary -- References -- Chapter 13: Fast-Charging Infrastructure Planning -- 13.1 Introduction -- 13.2 Charging Load Analysis -- 13.3 Load Profiles of EVs -- 13.4 Load Profiles of e-Buses -- 13.5 Load Profiles of e-Trucks -- 13.6 Load Profiles of Electric Marine -- 13.7 Load Profiles for Power Substations -- 13.8 Load Profiles for Industrial Facilities -- 13.9 Integrated Load Profiles -- 13.10 Development of Fast-Charging Station for Industrial Facilities and e-Trucks -- 13.10.1 Deployment Impacts -- 13.11 Summary -- References -- Chapter 14: Techno-economic Analysis of Fast-Charging Infrastructure -- 14.1 Introduction -- 14.2 Integrated Deployment Model of Fast-Charging Stations -- 14.3 Lifecycle Cost Analysis of Charging Station -- 14.3.1 Cost Calculation -- 14.4 Techno-economic Analysis -- 14.5 Summary -- References -- Chapter 15: Advances in Charging Infrastructures -- 15.1 Introduction -- 15.2 V2G Charging -- 15.2.1 V2G System Design -- 15.2.2 V2G Deployment -- 15.2.3 Benefits -- 15.3 Control Strategy -- 15.4 V2G Installation -- 15.5 Case Study V2G System Design -- 15.6 Flywheel-Based Fast Charging -- 15.7 Case Study V2G with Commercial Building -- 15.8 Wireless Charging -- 15.9 V2V Charging -- 15.10 Next-Generation Transportation Infrastructure -- 15.11 Summary -- References -- Chapter 16: Nuclear-Renewable Hybrid Energy Systems with Charging Stations for Transportation Electrification -- 16.1 Introduction -- 16.2 System Description -- 16.3 Case Study -- 16.4 Results -- 16.5 Nuclear-Renewable Hybrid Energy Systems with Fast-Charging Station -- 16.6 Fast-Charging Station Design -- 16.6.1 Charging Mode -- 16.6.2 Discharging Mode -- 16.7 Summary -- References -- Chapter 17: Transactive Energy for Charging Infrastructures -- 17.1 Introduction -- 17.2 Transactive Energy for Charging Station.
17.2.1 Condition to Start Searching for Charging Station.
Record Nr. UNINA-9910586583003321
Gabbar Hossam A.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui